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Key findings

Long linear infrastructure, e.g. highways and 
railways, includes large numbers of dispersed 
earthwork assets. Depending on their age 
and history, it can be practically impossible 
to constantly maintain up-to-date condition 
information (Network Rail, 2018A). 

However, this data, and models using it, play 
a vital role in predicting earthwork behaviour 
and guiding intervention decision-making, 
which must take account of both the 
likelihood and consequences of asset 
failures. 

ACHILLES has developed novel surrogate 
models to help address uncertainty in 
earthwork assessment and make the most of 
limited data. 

Key findings from the data analytics for 
decision-making are:

• The absence of comprehensive historical 
data and records means that there is 
uncertainty in relation to past as well as 
future asset behaviour and interventions.

• Our surrogate model (or emulator, see also 
Reading Guide 5) takes account of various 
sources of uncertainty and can be used by 
asset managers to obtain information on 
earthwork condition and closeness to 
geotechnical failure. Comparison of the 
expected costs of slope failure with the 
expected costs of preventative intervention 
can help address uncertainty in relation to 
predicted time to failure.

Figure 1: Summary workflow for building and training the emulator.

Introduction

•Emulator: a function that 
approximates the 
geotechnical model

•It relates the 5 input 
variables to earthwork 
deterioration

Concept: emulation 
using Gaussian 

processes

•Gaussian Processes (GPs): are similar 
to a multivariate normal distribution 
and are defined by hyperparameters

•The emulator/GP is trained and 
tuned using Bayesian inference

Process: training the 
emulator

•The emulator's 
hyperparameters are related 
to the 5 input variables

•This is used to make 
deterioration predictions for 
failure time and volume, and 
factor of safety

Outcome: predicting 
deterioration
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Our statistical emulator simplifies 
and accelerates analysis of 
infrastructure slopes

Routine slope stability analysis for 
embankments and cuttings is deterministic 
and generally takes two forms. Simple limit 
equilibrium analysis is very common and is 
suitable for large numbers of slopes, 
however it cannot capture long term 
deterioration processes. The alternatives 
include computationally-intensive numerical 
simulation, which can capture the 
appropriate processes but cannot be applied 
practically across a full earthworks portfolio 
[1,2].

Design charts, for example, showing time to 
failure (TTF) or factor of safety (FOS), could 
be developed based on advanced numerical 
simulation [3,4]. However, the amount of 
model runs which is needed to understand 
the (continuous) relationships between a 
combination of an earthwork’s properties 
and deterioration is infeasible. Instead, we 
have constructed an emulator which 
estimates the relationship between input 
variables and TTF using a carefully designed 
training set of model runs. Using this set, we 
aimed to interpolate/estimate the 
relationship between earthwork properties 
and deterioration. In the training data set, we 
varied five input variables known to be 
strongly related to deterioration: slope 
geometry (height and angle), soil strength (c’ 
and ϕ'), and permeability.  The slope 
geometry ranges were adopted based on 
LiDAR scan data of the Great Western Main 
Line railway relating to slopes in high 
plasticity over-consolidated clays (height 4 to 

20m, angles of 1V in 0.5H to 1V  in 7.5H) with 
shear strength parameters and permeability 
were derived from the literature (c’ of 3 to 10 
kPa, ϕ' of 18.5° to 25° and permeability from  
1.5×10-9 to 2.5×10-8 m/s) [e.g. 5 & 6]. The 
surrogate model was trained to emulate 
deterioration indicators, including TTF and 
factor of safety. 

The emulation is performed using Gaussian 
processes (GPs) [5], which are summarised in 
Figure 1. GPs can be thought of as random 
functions which are designed to mimic a 
process of interest. GPs are controlled by 
hyperparameters (control parameters) which 
are, in turn, related to the input variables - 
this is how input-output relationships are 
modelled in the emulator. The 
hyperparameters are estimated using 
Bayesian inference and Markov chain Monte 
Carlo sampling.

The emulator makes rapid estimates 
of time to failure and factor of 
safety

Time to failure (TTF) is defined in our study as 
the time at which an earthwork reaches a 
factor of safety of one. We used our 
emulator to create time-to-failure maps for 
different scenarios (Figure 2).  To provide 
confidence in the method we compared the 
outputs with the failure potential contours 
for Network Rail earthworks as reported in 
the Global Stability and Resilience Appraisal 
(Mellor et al, 2017B). The contours overlay 
very well with our predictions for an over-
consolidated clay slope. TTF can also be 
transformed to obtain failure probability 
contours [6]. 

Our key developments in data analytics for 
decision-making
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The emulator can also be used to derive 
factor of safety (FOS) time series (Figure 3). 
Our emulator approximates the FOS with a 
flexible family of curves and can capture 
convex and concave behaviours. 

The emulator informs decisions 
about maintenance and repair 
interventions by rapidly comparing 
options

To be able to compare intervention options 
on a cost-benefit basis, information about 
the size of the failures to be repaired is 
required. We can also emulate failure area as 
a function of the input variables for 
application in these assessments. Using this, 
along with predicted TTFs with and without 
interventions enable the assessment of the 
comparative discounted whole-life costs of 
interventions at different times in an asset’s 
lifecycle [7-9].

The emulator helps understand 
uncertainty in asset performance

Emulation was performed using Bayesian 
inference which helps quantify uncertainty 
based on prior expert knowledge. The 
uncertainty ranges that we obtain account 
for the uncertainty in the ‘true’ underlying 
model and variability in the model fit. 
Uncertainty also arises from the lack of 
comprehensive data on historic asset failures 
and interventions. 

All estimations made using the emulator are 
obtained as probability distributions. 
Therefore, it is straightforward to make an 
estimate of the most likely time/form of 
deterioration as well as confidence intervals. 
The range of TTF values can be used to 

calculate the (increasing) cumulative 
probability of failure over time, which, 
combined with an estimated or assumed cost 
of failure, provides an increasing ‘expected 
cost of failure’ over time. Conversely, 
subtracting the cumulative probability of 
failure from one yields the reducing 
cumulative probability over time of the asset 
not failing, and multiplying this by an 
estimated or assumed cost of intervention 
produces a declining ‘expected cost of 
intervention’ over time. 

An example is shown in Figure 4, where a 
cutting slope constructed in 1836 is assumed 
not since to have failed or to have undergone 
intervention. Aiming to intervene at the point 
when, or shortly before, the expected costs 
of failure equal and subsequently exceed 
those of intervention (in this case 
approximately 2036) is similar to the 
‘minimisation of maximum regret’ (MiniMax 
Regret) (Winston, 2004C). This example, 
accounting for model uncertainty, considers 
only the economic factors informing decision 
making. The next Reading Guide [7] also 
discusses other factors to consider. 

The approach illustrated below is consistent 
with consideration of both the likelihood of 
failure and its consequences, typical in asset 
management practice.  It can be seen that 
higher expected failure costs and/or lower 
expected intervention costs incentivise early 
intervention, and vice versa. An inherent 
assumption of no past failures or 
interventions (based on a lack of data) tends 
to result in the prediction of the imminent 
need for intervention for a large number of 
assets and remains to be addressed.
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Figure 2: Estimated mean time to failure for high plasticity over-consolidated clay cuttings. (a) example 
TTFs for using the ACHILLES emulator; (b) comparable failure potential contours as reported in the 

Global Stability and Resilience Appraisal (Mellor et al., 2017B).

Figure 3: FOS time-series produced using the emulator. Dashed lines indicate the mean and the most likely 
95% region. The abbreviations “Coh” and “Perm” indicate cohesion and permeability.
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Figure 4: Expected costs over time of asset failure vs. intervention accounting for uncertainty.

Please also refer to the other ACHILLES reading guides where you can find out more about what 
we have achieved. Reading Guide 1 explains the context of the ACHILLES Programme Grant. 
Reading Guide 2 describes how we have achieved a deeper understanding of deterioration 
affecting the clay materials that we focused on. Reading Guide 3 extends our understanding of 
deterioration to the long linear geotechnical asset scale. Reading Guide 4 outlines the ways in 
which we can assess the condition of our long linear geotechnical assets. Reading Guide 5 
provides an overview of the design tools that ACHILLES has developed. Reading Guide 7 discusses 
the complexities of the business case of timely intervention and mitigation.

Further reading

Link to ACHILLES emulator app

asvalova.shinyapps.io/ACHIMULATOR/
The ACHIMULATOR is an online interface to the emulator for TTF 
prediction. It is based on a simplified version of the methodology in 
[5] to enable instant calculations. Work is ongoing to extend the 
ACHIMULATOR's functionality to FOS prediction.
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